This specification describes the situation of the Proximus network and services. It will be subject to modifications for corrections or when the network or the services will be modified. Please take into account that modifications can appear at any moment. Therefore, the reader is requested to check regularly with the most recent list of available specifications that the document in one’s possession is the latest version.

Proximus can’t be held responsible for any damages due to the use of a version of this specification which is not included in the most recent list of available specifications (list always available with a request to the e-mail address mentioned in the underneath paragraph).

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have remarks concerning its accuracy, please send a mail to the following address proximus.uni.spec@proximus.com and your remark will be transmitted to the right Proximus department.

The User Network Interface Specifications published via Internet are available for your information but have no official value. The only documents with an official value are printed on a specific paper.

If you want to get an official version of this User Network Interface Specification, please order it by sending your request by mail to proximus.uni.spec@proximus.com
IMS VoIP

FAX over IP
TABLE OF CONTENTS

0. Document History .. 5

1. Scope .. 6

2. References ... 7
 2.1. Normative references .. 7
 2.2. Informative references .. 8

3. Symbols, Definitions and Abbreviations .. 9
 3.1. Symbols ... 9
 3.2. Definitions .. 9
 3.3. Abbreviations .. 9

4. General .. 11
 4.1. Structure of the document .. 11
 4.2. Types of Endpoints ... 11
 4.3. Reference point ... 11

5. SIP Behaviour ... 13
 5.1. Introduction ... 13
 5.2. General aspect .. 13
 5.3. G.711 pass-through ... 14
 5.4. T.3814
 5.4.1. General aspects.. 14
 5.4.2. T.38 versions ... 14
 5.4.3. Originating scenarios .. 15
 5.4.3.1. Fax detection at destination .. 15
 5.4.3.1.1. Successful changeover: T.38 only proposed ... 15
 5.4.3.1.2. Unsuccessful changeover, case 1: G.711 and T.38 proposed (200 OK response) 17
 5.4.3.1.3. Unsuccessful changeover, case 2: T.38 only proposed (488 or 415 response / re-INVITE) 18
 5.4.3.1.4. Unsuccessful changeover, case 3: T.38 only proposed (488 or 415 response / ACK) 19
 5.4.3.2. Fax detection at origin ... 21
5.4.3.2.1. Successful changeover: T.38 only proposed ... 21
5.4.3.2.2. No changeover, dedicated SIP UA for fax ... 23
5.4.4. Terminating scenarios .. 23
5.4.4.1. Fax detection at destination .. 23
5.4.4.1.1. Successful changeover: proposing T.38 only .. 23
5.4.4.1.2. Unsuccessful changeover, case 1: proposing G.711 and T.38 (200 OK response) 25
5.4.4.1.3. Unsuccessful changeover, case 2: proposing T.38 only (488 or 415 response / re-
INVITE) .. 26
5.4.4.1.4. Unsuccessful changeover, case 3: proposing T.38 only (488 or 415 response / ACK) 27
5.4.4.2. Fax detection at origin .. 30
5.4.4.2.1. Successful changeover: T.38 only proposed .. 30
5.4.5. SDP T38 attribute table ... 31
5.4.5.1. MGW .. 31
5.5. V.152 ... 32
Document History

Every update of this document results in a complete new version with new version number and release date.

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Main or important changes since previous version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>December 20, 2010</td>
<td>First published version</td>
</tr>
<tr>
<td>1.1</td>
<td>August 19, 2011</td>
<td>Existing fax call scenarios clarified, some scenarios added</td>
</tr>
<tr>
<td>1.2</td>
<td>January 19, 2012</td>
<td>Scenario added</td>
</tr>
<tr>
<td>1.3</td>
<td>November 30, 2012</td>
<td>Scenarios using 2 m-lines (G.711, T.38) changed</td>
</tr>
<tr>
<td>1.4</td>
<td>January 13, 2016</td>
<td>Changed “Belgacom” in “Proximus”</td>
</tr>
<tr>
<td>1.5</td>
<td>November 24, 2016</td>
<td>Update due to name change “Bizz IP telephony multi” into “Enterprise Voice Multi”</td>
</tr>
<tr>
<td>2.0</td>
<td>May 25, 2019</td>
<td>Document name changed from BGC to PXM</td>
</tr>
</tbody>
</table>
1. Scope

This document defines the SIP signalling over the VoIP interface between the Proximus IP Multimedia Subsystem (IMS) and SIP enabled device for real-time fax over IP.

Two methods for the support of fax over IP have been identified:

- G.711 fax pass through
- T.38

The specifications listed in this document are not exhaustive but have to be interpreted as “minimal requirements” for fax support in the Proximus IMS network.

This document is part of a set of documents describing the UNI interface of the Proximus IMS Network. Other documents in this set are:

For Business Trunking:

- PXM IMS Corporate VoIP – UNI specification – General
- PXM IMS Corporate VoIP – UNI specification – SIP signalling – Business Trunking with IMS services
- PXM IMS Corporate VoIP – UNI specification – SIP signalling – Wireless Office extended
- PXM IMS Corporate VoIP – UNI specification – SIP signalling – Enterprise Voice Multi
- PXM IMS Corporate VoIP – UNI specification – Testing
2. References

Whenever a date of edition is mentioned, the document with this date should be consulted. If no date is present, the latest version of this document should be consulted.

2.1. Normative references

<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proximus</td>
<td>PXM IMS Corporate VoIP – UNI specification – SIP signalling – Business Trunking with IMS services</td>
</tr>
<tr>
<td>2</td>
<td>Proximus</td>
<td>PXM IMS Corporate VoIP – UNI specification – SIP signalling – Wireless Office Extended</td>
</tr>
<tr>
<td>3</td>
<td>Proximus</td>
<td>PXM IMS Corporate VoIP – UNI specification – SIP signalling – Enterprise Voice Multi</td>
</tr>
<tr>
<td>4</td>
<td>3GPP TS 24.229</td>
<td>IP Multimedia call control protocol based on SIP and SDP, Stage 3 Release 7</td>
</tr>
<tr>
<td>5</td>
<td>3GPP TS 23.167</td>
<td>IP Multimedia Subsystem (IMS) emergency sessions, Release 7</td>
</tr>
<tr>
<td>6</td>
<td>SIP forum</td>
<td>The SIP connect 1.1 technical recommendation (draft)</td>
</tr>
<tr>
<td>7</td>
<td>ETSI TS 182 025</td>
<td>Business Trunking; architecture and functional description v2.1.1</td>
</tr>
<tr>
<td>8</td>
<td>ITU-T E.164</td>
<td>The international telecommunication numbering plan</td>
</tr>
<tr>
<td>9</td>
<td>IETF RFC 3261</td>
<td>SIP: Session Initiation Protocol</td>
</tr>
<tr>
<td>10</td>
<td>IETF RFC 3262</td>
<td>Reliability of Provisional Responses in the Session Initiation Protocol (SIP)</td>
</tr>
<tr>
<td>11</td>
<td>IETF RFC 3264</td>
<td>An Offer/Answer Model with the Session Description Protocol (SDP)</td>
</tr>
<tr>
<td>12</td>
<td>IETF RFC 3265</td>
<td>Session Initiation Protocol (SIP)-Specific Event Notification</td>
</tr>
<tr>
<td>13</td>
<td>IETF RFC 4566</td>
<td>SDP: Session Description Protocol</td>
</tr>
<tr>
<td>14</td>
<td>IETF RFC 2976</td>
<td>The SIP INFO Method</td>
</tr>
<tr>
<td>15</td>
<td>IETF RFC 3311</td>
<td>The Session Initiation Protocol (SIP) UPDATE Method</td>
</tr>
<tr>
<td>16</td>
<td>IETF RFC 3323</td>
<td>A Privacy Mechanism for the Session Initiation Protocol (SIP)</td>
</tr>
<tr>
<td>17</td>
<td>IETF RFC 3325</td>
<td>Private Extensions to SIP for Asserted Identity within Trusted Networks</td>
</tr>
<tr>
<td>18</td>
<td>IETF RFC 3326</td>
<td>The Reason Header Field for the Session Initiation Protocol (SIP)</td>
</tr>
<tr>
<td>19</td>
<td>IETF RFC 3455</td>
<td>Private header extensions for SIP for 3GPP</td>
</tr>
<tr>
<td>20</td>
<td>IETF RFC 3515</td>
<td>The Session Initiation Protocol (SIP) REFER Method</td>
</tr>
<tr>
<td>21</td>
<td>IETF RFC 3891</td>
<td>The Session Initiation Protocol (SIP) "Replaces" Header</td>
</tr>
<tr>
<td>22</td>
<td>IETF RFC 3892</td>
<td>The Session Initiation Protocol (SIP) Referred-By Mechanism</td>
</tr>
<tr>
<td>23</td>
<td>IETF RFC 3960</td>
<td>Early Media and Ringing Tone Generation in SIP</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>24</td>
<td>IETF RFC 4028</td>
<td>Session Timers in the Session Initiation Protocol (SIP)</td>
</tr>
<tr>
<td>25</td>
<td>IETF RFC 2617</td>
<td>HTTP Authentication: Basic and Digest Access Authentication</td>
</tr>
<tr>
<td>26</td>
<td>IETF RFC 1321</td>
<td>The MD5 Message-Digest Algorithm</td>
</tr>
<tr>
<td>27</td>
<td>IETF RFC 3550</td>
<td>RTP: A Transport Protocol for Real-Time Applications</td>
</tr>
<tr>
<td>28</td>
<td>IETF RFC 3551</td>
<td>RTP Profile for Audio and Video Conferences with Minimal Control</td>
</tr>
<tr>
<td>29</td>
<td>IETF RFC 4733</td>
<td>RTP Payload for DTMF Digits, Telephony Tones, and Telephony Signals</td>
</tr>
<tr>
<td>30</td>
<td>IETF RFC 4734</td>
<td>Definition of Events for Modem, FAX and Text Telephony signals</td>
</tr>
<tr>
<td>31</td>
<td>IETF RFC 5806</td>
<td>Diversion indication in SIP</td>
</tr>
<tr>
<td>32</td>
<td>IETF RFC 6044</td>
<td>Mapping and Interworking of Diversion Information between Diversion and History-Info Headers in the Session Initiation Protocol (SIP)</td>
</tr>
<tr>
<td>33</td>
<td>IETF RFC 4244</td>
<td>An Extension to SIP for Request History Information</td>
</tr>
<tr>
<td>34</td>
<td>IETF RFC 3966</td>
<td>The Tel URI for Telephone Numbers</td>
</tr>
<tr>
<td>35</td>
<td>IETF draft</td>
<td>Applying Loose Routing to Session Initiation Protocol (SIP) User Agents (UA)* (expired)</td>
</tr>
<tr>
<td>36</td>
<td>Proximus</td>
<td>PXM IMS Corporate VoIP – UNI specification – General</td>
</tr>
<tr>
<td>37</td>
<td>ITU-T V.38</td>
<td>Procedures for real-time Group 3 facsimile communication over IP networks</td>
</tr>
<tr>
<td>38</td>
<td>ITU-T V.15X series</td>
<td>Modern over IP series of recommendations</td>
</tr>
</tbody>
</table>

2.2. Informative references
3. Symbols, Definitions and Abbreviations

3.1. Symbols

For the purpose of the present document, the following symbols apply:
None.

3.2. Definitions

For the purpose of the present document, the following definitions apply:
None.

3.3. Abbreviations

For the purpose of the present document, the following abbreviations apply:

- 3GPP: 3rd Generation Partnership Project
- AGW: Access Gateway
- ATA: Analogue Terminal Adapter
- CED: Called station identification tone
- CNG: Calling tone
- CPE: Customer Premises Equipment
- ETSI: European Telecommunications Standards Institute
- FoIP: Fax over IP
- HGW: Home Gateway
- IAD: Integrated Access Device
- IETF: Internet Engineering Task Force
- IMS: IP Multimedia Subsystem
- ITU: International Telecommunication Union
- ITS: IP Telephony Services
- MGW: Media Gateway
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC</td>
<td>Request For Comment</td>
</tr>
<tr>
<td>RTP</td>
<td>Real Time Transport Protocol</td>
</tr>
<tr>
<td>SDP</td>
<td>Session Description Protocol</td>
</tr>
<tr>
<td>SIP</td>
<td>Session Initiation Protocol</td>
</tr>
<tr>
<td>UNI</td>
<td>User Network Interface</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over IP</td>
</tr>
</tbody>
</table>
4. General

4.1. Structure of the document

The general structure of this document mainly covers the following aspects:

- General aspects
- G.711 pass-through
- T38
 - Originating scenarios
 - Fax detection at destination
 - Successful changeover: T.38 only proposed
 - Unsuccessful changeover, case 1: G.711 and T.38 proposed (200 OK)
 - Unsuccessful changeover, case 2: T.38 only proposed (re-INVITE)
 - Unsuccessful changeover, case 3: T.38 only proposed (ACK)
 - Fax detection at origin
 - Successful changeover: T.38 only proposed
 - Terminating scenarios
 - Fax detection at destination
 - Successful changeover: proposing T.38 only
 - Unsuccessful changeover, case 1: proposing G.711 and T.38 (200 OK)
 - Unsuccessful changeover, case 2: proposing T.38 only (re-INVITE)
 - Unsuccessful changeover, case 3: proposing T.38 only (ACK)
 - Fax detection at origin
 - Successful changeover: proposing T.38 only
 - SDP T38 attribute table

4.2. Types of Endpoints

Possible “Endpoints” are:

- the Homegateway (HGW) for I-Talk
- the Analogue Terminal Adapter (ATA) for ITS
- the Integrated access device (IAD) for ISDN on IMS
- the AGW/AGCF for PSTN replacement
- the MGW/MGCF for PSTN/ISDN gateway
- IP-PBXs for Business Trunking

4.3. Reference point

All characteristics described in this UNI-specification are applicable at the reference point indicated in the figure below.
Figure 1: UNI reference point
5. SIP Behaviour

5.1. Introduction

Besides the protocol support (see [1][2][3] also the expected behaviour is important. E.g. how does switching to FAX mode exactly take place.

5.2. General aspect

Two methods for the support of fax over IP have been identified:

- G.711 fax pass through
- T.38

Basically the support of T.38 fax relay in IMS depends highly on the capabilities of the “end devices”. The core IMS network functions (e.g. P-CSCF, S-CSCF etc.) and the Application Servers do not interfere with T.38 media capabilities announced in the SDP of the session set-up.

Since we cannot guarantee that all possible “end devices” will support T.38, it will be impossible and it shall be avoided to have fax calls being set-up with T.38 as only proposed codec. This means that a fax call will always be set-up with a normal codec i.e. G.711 A-law or G.729 as proposed codec.

The “terminating” endpoint shall then upon detection of a fax call use a re-INVITE to switch the RTP stream from G.711 A-law or G.729 to T.38 (if supported)

Endpoints may detect various fax tones (CNG, CED) or flag sequence (like Preamble) and pass these in the audio RTP streams before they are detected. Once detected, Endpoints switch from audio to fax mode and initiate a T.38 fax packet transmission.

Two possible ways exist for detecting a fax communication between 2 Endpoints:

- On the emitting Endpoint (the one sending the facsimile document), the calling tone (CNG) is detected. The CNG tone is however an optional signal.
- On the receiving Endpoint, the V.21 Preamble flag sequence is detected. The Preamble is always present and follows the called station identification tone (CED) when CED is present.

Endpoints must support the detection of fax on Preamble flag sequence.
Endpoints may support the detection of fax on CNG tone, but this is not recommended because this signal doesn’t distinguish between the used standard (e.g. V.17 or V.34) and the simplicity of the tone might lead to false fax detection.

The SIP entities that support T.38, shall also support the G.711 fax pass-through mode.

If one of the SIP entities does not support T.38 real-time fax, a fall back to a fax pass-through mode shall occur to allow the facsimile transmission.

5.3. G.711 pass-through

This paragraph is applicable if T38 codec is not supported by the end device.

Incoming call to the SIP UA

Any incoming call may originate from a fax machine. Fax calls should use G.711 A-law as codec. In case an incoming fax call starts with another codec, the re-INVITE mechanism shall be used to change the media description parameters of the call:

- Change codec to G.711 A-law

Outgoing call from the SIP UA

An outgoing call originated by a fax machine should use G.711 A-law as codec. In case an outgoing fax call starts with another codec, the re-INVITE mechanism shall be used to change the media description parameters of the call:

- Change codec to G.711 A-law

5.4. T.38

This paragraph is applicable if T.38 codec is supported by the end device.

5.4.1. General aspects

The current version of this document deals primarily with one transport protocol for the media: T.38 over UDPTL. (packetization time: 20 ms)

5.4.2. T.38 versions

ITU-T recommendation T.38 defines the procedures for real-time Group 3 facsimile communication over IP networks.
T.38 version numbers are 0, 1, 2, and 3.

- Version 0: original version
- Version 1: support for Internet Facsimile Protocol (IFP) over TCP.
- Version 2: The abstract syntax notation 1 (ASN.1) notation is modified in version 2 with TCP support. The modified ASN.1 notation in version 2 and previous notations in version 0 or 1 cannot interoperate with each other.
- Version 3: supports V.34 fax terminals

The IMS network only supports T38 version 0.

note: T.38 version 3 is not yet available on the network elements and most initial deployments.

Because T.38 version 0 does not support V.34, Super G3 fax transmissions (V.34) are transmitted in G.711 pass-through mode. The implementation of T.38 version 3 is under study.

5.4.3. Originating scenarios

5.4.3.1. Fax detection at destination

5.4.3.1.1. Successful changeover: T.38 only proposed

In this scenario

- The originating SIP UA supports T.38
- The call is set-up with a speech codec (e.g. G.711 A-law or G.729)
- Fax is detected at called-party, initiating the re-INVITE proposing only T.38
- The originating SIP UA accepts T.38, answers with 200 OK (T.38)

Note: When proposing T.38 only, fallback to G.711 MUST be supported as well!

After the basic call set-up and fax detection at the called party, the originating SIP UA receives an INVITE to switch from audio to fax mode.

The INVITE contains SDP information regarding the proposed call parameters. Only Media type image T.38 is announced in the SDP information.

The originating SIP UA returns a 200 OK response containing SDP information regarding the accepted call parameters. Media type image T.38 is accepted.
Note: According to RFC 3264 for each "m=" line in the offer, there MUST be a corresponding "m=" line in the answer. The answer MUST contain exactly the same number of "m=" lines as the offer.

The originating SIP UA receives an ACK message in order to properly close the INVITE transaction.

Once the fax transmission is terminated, audio capabilities may be restored or normal call release procedures may apply.

Note: figure 2 does not show the restoration of audio capabilities.

![Figure 2: Successful changeover](image)
5.4.3.1.2. **Unsuccessful changeover, case 1: G.711 and T.38 proposed (200 OK response)**

In this scenario

- The originating SIP UA doesn’t support T.38
- The call is set-up with a speech codec (e.g. G.711 A-law or G.729)
- Fax is detected at called-party, initiating the re-INVITE proposing G.711 A-law and T.38
- The originating SIP UA rejects the T.38 offer, answers with 200 OK (G.711 A-law),

After the basic call set-up and fax detection at the called party, the originating SIP UA receives an INVITE to switch from audio to fax mode.

![Diagram showing the interaction between SIP UA and IMS](image)
The *INVITE* contains SDP information regarding the proposed call parameters. Media type audio G.711 A-law and media type image T.38 are announced both in the SDP information.

The originating SIP UA returns a 200 OK response containing SDP information regarding the accepted call parameters. Media type audio G.711 A-law is accepted.

Note: According to RFC 3264 for each "m=" line in the offer, there MUST be a corresponding "m=" line in the answer. The answer MUST contain exactly the same number of "m=" lines as the offer. To reject an offered stream, the port number in the corresponding stream in the answer MUST be set to zero. Eg:

- (m):audio <port number> RTP/AVP 8 101
- (m):image 0 udptl t38

The originating SIP UA receives an ACK message in order to properly close the *INVITE* transaction.

Once the fax transmission is terminated, normal call release procedures apply.

5.4.3.1.3. Unsuccessful changeover, case 2: T.38 only proposed (488 or 415 response / re-*INVITE*)

In this scenario

- The originating SIP UA doesn't support T.38
- The call is set-up with a speech codec (e.g. G.711 A-law or G.729)
- Fax is detected at called-party, initiating the re-*INVITE* proposing only T.38
- The originating SIP UA answers with 488 (Not Acceptable here) or 415 (Unsupported Media Type)
- The called party sends a re-*INVITE* (G.711 A-law) in order to fallback to G.711 for fax transmission

After the basic call set-up and fax detection at the called party, the originating SIP UA receives an *INVITE* to switch from audio to fax mode.

The *INVITE* contains SDP information regarding the proposed call parameters. Only the media type image T.38 is announced in the SDP information.

The originating SIP UA returns a 488 response (Not Acceptable here) or a 415 response (Unsupported Media Type).

- In case of a 488 Not acceptable Here response:
 - A Warning header may be present providing information about the reason why the offer was rejected. E.g. warning code 304 Media type not available may be used.
 - A message body containing a description of media capabilities MAY be present in the response
- In case of a 415 Unsupported Media type response:
 - An Accept header listing the acceptable types may be included.

The originating SIP UA receives an ACK message in order to properly close the *INVITE* transaction. However the failure of the re-*INVITE* should not cause the existing call to fail. In order to continue the
session using fallback a new re-INVITE with media type audio G.711 A-law and without the T.38 media type will be received by the originating SIP UA.

Once the fax transmission is terminated, normal call release procedures apply.

5.4.3.1.4. Unsuccessful changeover, case 3: T.38 only proposed (488 or 415 response / ACK)

In this scenario

- The originating SIP UA doesn’t support T.38
- The call is set-up with a speech codec (e.g. G.711 A-law or G.729)
- Fax is detected at called-party, initiating the re-INVITE proposing only T.38
- The originating SIP UA answers with 488 (Not Acceptable here) or 415 (Unsupported Media Type)
- The called party sends a ACK in order to fallback to previously negotiated codec

After the basic call set-up and fax detection at the called party, the originating SIP UA receives an INVITE to switch from audio to fax mode.

The INVITE contains SDP information regarding the proposed call parameters. Only the media type image T.38 is announced in the SDP information.

The originating SIP UA returns a 488 response (Not Acceptable here) or a 415 response (Unsupported Media Type).

Figure 5: Unsuccessful changeover, case 3
The originating SIP UA receives an ACK message in order to properly close the INVITE transaction. However the failure of the re-INVITE should not cause the existing call to fail. The session continues using the previously negotiated characteristics.

Note: According to RFC 3261 section 3:

During the session, either Alice or Bob may decide to change the characteristics of the media session. This is accomplished by sending a re-INVITE containing a new media description. This re-INVITE references the existing dialog so that the other party knows that it is to modify an existing session instead of establishing a new session. The other party sends a 200 (OK) to accept the change.

The requestor responds to the 200 (OK) with an ACK. If the other party does not accept the change, he sends an error response such as 488 (Not Acceptable Here), which also receives an ACK. However, the failure of the re-INVITE does not cause the existing call to fail - the session continues using the previously negotiated characteristics.

Note: Fax calls should use G.711 A-law as codec (if T.38 not supported). In case an incoming fax call starts with another codec (e.g. G.729), the re-INVITE mechanism shall be used to change the media description parameters of the call: (see 5.3)

Once the fax transmission is terminated, normal call release procedures apply.

5.4.3.2. Fax detection at origin

5.4.3.2.1. Successful changeover: T.38 only proposed

In this scenario

- The originating SIP UA supports T.38
- The call is set-up with a speech coded (e.g. G.711 A-law or G.729)
- Fax is detected at calling-party side, initiating the re-INVITE proposing only T.38
- The called party accepts the switchover to T.38

Note: When proposing T.38 only, fallback to G.711 MUST be supported as well!

After the basic call set-up and fax detection at the calling party, the originating SIP UA initiates an INVITE to switch from audio to fax mode.

The INVITE contains SDP information regarding the proposed call parameters. Media type image T.38 and media type audio G.711 A-law are announced both in the SDP information.

The originating SIP UA receives a 200 OK response containing SDP information regarding the accepted call parameters. The media type image T.38 is accepted.
Note: According to RFC 3264 for each "m=" line in the offer, there MUST be a corresponding "m=" line in the answer. The answer MUST contain exactly the same number of "m=" lines as the offer.

The originating SIP UA sends an ACK message in order to properly close the INVITE transaction. Once the fax transmission is terminated, normal call release procedures apply.
5.4.3.2.2. No changeover, dedicated SIP UA for fax

Particular configurations at customer side may include dedicated fax ports. In such case any call originating from that SIP UA instance will be a fax call and hence it could be attempted to set-up the call immediately with T.38 as only codec.

This scenario is not supported and shall not be used!

5.4.4. Terminating scenarios

5.4.4.1. Fax detection at destination

5.4.4.1.1. Successful changeover: proposing T.38 only

In this scenario
- The terminating SIP UA supports T.38
- The call is set-up with G.711 A-law (or G.729) codec
- Fax is detected at called-party, initiating the re-INVITE proposing T.38 only
- T.38 is accepted by the origin

Note: When proposing T.38 only, fallback to G.711 MUST be supported as well!

After the basic call set-up and fax detection at the called party, the terminating SIP UA initiates an INVITE to switch from audio to fax mode.

The INVITE contains SDP information regarding the proposed call parameters. Only media type image T.38 is announced in the SDP information.

The terminating SIP UA receives a 200 OK response containing SDP information regarding the accepted call parameters. Media type image T.38 is accepted.

Note: According to RFC 3264 for each “m=” line in the offer, there MUST be a corresponding “m=” line in the answer. The answer MUST contain exactly the same number of “m=” lines as the offer.
The terminating SIP UA sends an ACK message in order to properly close the INVITE transaction.

Once the fax transmission is terminated, audio capabilities may be restored or normal call release procedures may apply.

Note: figure 9 does not show the restoration of audio capabilities.
5.4.4.1.2. Unsuccessful changeover, case 1: proposing G.711 and T.38 (200 OK response)

In this scenario

- The terminating SIP UA supports T.38
- The call is set up with G.711 A-law (or G.729) codec
- Fax is detected at called-party, initiating the re-INVITE proposing G.711 A-law and T.38
- The origin doesn’t accept T.38

After the basic call set-up and fax detection at the called party, the terminating SIP UA initiates an INVITE to switch from audio to fax mode.

The INVITE contains SDP information regarding the proposed call parameters.
Media type audio G.711 A-law and media image T.38 A-law are announced both in the SDP information.

The termination SIP UA receives a 200 OK response containing SDP information regarding the accepted call parameters. Media type image T.38 is not accepted.

Note: According to RFC 3264 for each “m=” line in the offer, there MUST be a corresponding “m=” line in the answer. The answer MUST contain exactly the same number of “m=” lines as the offer. To reject an offered stream, the port number in the corresponding stream in the answer MUST be set to zero. Eg:

- (m):audio <port number> RTP/AVP 8 101
- (m): image 0 udptl t38

The terminating SIP UA sends an ACK message in order to properly close the INVITE transaction.

Once the fax transmission is terminated, normal call release procedures apply.

5.4.4.1.3. Unsuccessful changeover, case 2: proposing T.38 only (488 or 415 response / re-INVITE)

In this scenario:
- The terminating SIP UA supports T.38
- The call is set-up with G.711 A-law (or G.729) codec
- Fax is detected at called-party, initiating the re-INVITE proposing T.38 only
- The origin doesn't accept T.38 and answers with 488 (Not Acceptable here) or 415 (Unsupported Media Type)
- The terminating SIP UA sent an ACK and sends a re-INVITE in order to fallback to G.711 for fax transmission

After the basic call set-up and fax detection at the called party, the terminating SIP UA initiates an INVITE to switch from audio to fax mode.

The INVITE contains SDP information regarding the proposed call parameters. Only media type image T.38 is announced in the SDP information.

The terminating SIP UA receives a 488 response (Not Acceptable here) or a 415 response (Unsupported Media Type)

The terminating SIP UA sends an ACK message in order to properly close the INVITE transaction. However the failure of the re-INVITE does not cause the existing call to fail, the session continues using fallback.
Once the fax transmission is terminated, normal call release procedures apply.

5.4.4.1.4. Unsuccessful changeover, case 3: proposing T.38 only (488 or 415 response / ACK)

In this scenario:

- The terminating SIP UA supports T.38
- The call is set-up with G.711 A-law (or G.729) codec
- Fax is detected at called-party, initiating the re-INVITE proposing T.38 only
- The origin doesn't accept T.38 and answers with 488 (Not Acceptable here) or 415 (Unsupported Media Type)
- The terminating SIP UA sent an ACK order to fallback to previously negotiated codec

After the basic call set-up and fax detection at the called party, the terminating SIP UA initiates an INVITE to switch from audio to fax mode.

The INVITE contains SDP information regarding the proposed call parameters. Only media type image T.38 is announced in the SDP information.

The terminating SIP UA receives a 488 response (Not Acceptable here) or a 415 response (Unsupported Media Type)
The terminating SIP UA receives an ACK message in order to properly close the INVITE transaction. However the failure of the re-INVITE should not cause the existing call to fail. The session continues using the previously negotiated characteristics.

Note: According to RFC 3261 section 3:

During the session, either Alice or Bob may decide to change the characteristics of the media session. This is accomplished by sending a re-INVITE containing a new media description. This re-INVITE references the existing dialog so that the other party knows
that it is to modify an existing session instead of establishing a new session. The other party sends a 200 (OK) to accept the change.

The requestor responds to the 200 (OK) with an ACK. If the other party does not accept the change, he sends an error response such as 488 (Not Acceptable Here), which also receives an ACK. However, the failure of the re-INVITE does not cause the existing call to fail - the session continues using the previously negotiated characteristics.

Note: Fax calls should use G.711 A-law as codec (if T.38 not supported). In case an incoming fax call starts with another codec (e.g. G.729), the re-INVITE mechanism shall be used to change the media description parameters of the call: (see 5.3)

Once the fax transmission is terminated, normal call release procedures apply.

5.4.4.2. Fax detection at origin

5.4.4.2.1. Successful changeover: T.38 only proposed

In this scenario
- The terminating SIP UA supports T.38
- The call is set-up with a speech coded (e.g. G.711 A-law or G.729)
- Fax is detected at calling-party side, initiating the re-INVITE proposing only T.38
- The called party accepts the switchover to T.38

Note: When proposing T.38 only, fallback to G.711 MUST be supported as well!

After the basic call set-up and fax detection at the originating party, the terminating SIP UA receives an INVITE to switch from audio to fax mode.

The INVITE contains SDP information regarding the proposed call parameters. Only media type image T.38 is announced in the SDP information.

The terminating SIP UA sends a 200 OK response containing SDP information regarding the accepted call parameters. The media type image T.38 is accepted.

Note: According to RFC 3264 for each "m=" line in the offer, there MUST be a corresponding "m=" line in the answer. The answer MUST contain exactly the same number of "m=" lines as the offer.

The terminating SIP UA receives an ACK message in order to properly close the INVITE transaction.
Once the fax transmission is terminated, normal call release procedures apply.

5.4.5. SDP T38 attribute table

5.4.5.1. MGW

This is an overview of the implementation of the SDP T38 attribute parameters in MGW.
<table>
<thead>
<tr>
<th>SDP attribute</th>
<th>MGW value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T38FaxRateManagement</td>
<td>Transferred TCF</td>
</tr>
<tr>
<td>T38FaxVersion</td>
<td>0</td>
</tr>
<tr>
<td>T38MaxBitRate</td>
<td>14400</td>
</tr>
<tr>
<td>T38FaxFillBitRemoval</td>
<td>Disable</td>
</tr>
<tr>
<td>T38FaxTranscodingMMR</td>
<td>Disable</td>
</tr>
<tr>
<td>T38FaxTranscodingJBIG</td>
<td>Disable</td>
</tr>
<tr>
<td>T38FaxMaxBuffer</td>
<td>1800</td>
</tr>
<tr>
<td>T38FaxMaxDatagram</td>
<td>260</td>
</tr>
<tr>
<td>T38FaxUdpEC</td>
<td>t38UDPRedundancy</td>
</tr>
<tr>
<td>T38VendorInfo</td>
<td></td>
</tr>
</tbody>
</table>

5.5. V.152

The V.152 [38] procedures describe the support of voice band data over IP networks. As this standard is currently not widely implemented in endpoints it’s use is for further study.